Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 7.6.1.9 (Isomorphisms). Let $f: X \rightarrow Y$ be a morphism in an $\infty $-category $\operatorname{\mathcal{C}}$. The following conditions are equivalent:

$(1)$

The morphism $f$ is an isomorphism.

$(2)$

The morphism $f$ exhibits $X$ as a product of the one-element collection of objects $\{ Y \} $.

$(3)$

The morphism $f$ exhibits $Y$ as a coproduct of the one-element collection of objects $\{ X \} $.