Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 7.1.2.17 (Homology as a Colimit). Let $\operatorname{\mathcal{C}}= \operatorname{Ch}(\operatorname{\mathbf{Z}})$ denote the category of chain complexes of abelian groups, which we regard as a differential graded category (see Example 2.5.2.5). Let $A$ be an abelian group, and let us abuse notation by identifying $A$ with its image in $\operatorname{\mathcal{C}}$ (by regarding it as a chain complex concentrated in degree zero). For every simplicial set $S$, let $\mathrm{N}_{\ast }(S; A)$ denote the normalized chain complex of $S$ with coefficients in $A$, given by the tensor product $\mathrm{N}_{\ast }(S; \operatorname{\mathbf{Z}}) \boxtimes A$. Then the tautological map

\[ f: \mathrm{N}_{\ast }( S; \operatorname{\mathbf{Z}}) \rightarrow \operatorname{Hom}_{ \operatorname{Ch}(\operatorname{\mathbf{Z}}) }( A, \mathrm{N}_{\ast }(S;A) )_{\ast } \]

satisfies condition $(2)$ of Proposition 7.1.2.16: in fact, for every object $M_{\ast } \in \operatorname{\mathcal{C}}$, precomposition with $f$ induces an isomorphism of chain complexes

\[ \operatorname{Hom}_{\operatorname{\mathcal{C}}}( \mathrm{N}_{\ast }(S;A), M_{\ast } )_{\ast } \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{C}}}( \mathrm{N}_{\ast }(S;\operatorname{\mathbf{Z}}), \operatorname{Hom}_{\operatorname{\mathcal{C}}}( A, M_{\ast } )_{\ast } )_{\ast }. \]

It follows that the induced map $S \rightarrow \operatorname{Hom}_{ \operatorname{N}_{\bullet }^{\operatorname{dg}}(\operatorname{\mathcal{C}}) }( A, \mathrm{N}_{\ast }(S; A) )$ exhibits $\mathrm{N}_{\ast }(S;A)$ as a copower of $A$ by $S$ in the $\infty $-category $\operatorname{N}_{\bullet }^{\operatorname{dg}}(\operatorname{\mathcal{C}})$. In particular, the chain complex $\mathrm{N}_{\ast }(S;A)$ can be viewed as a colimit of the constant diagram $S \rightarrow \{ A \} \hookrightarrow \operatorname{N}_{\bullet }^{\operatorname{dg}}( \operatorname{Ch}(\operatorname{\mathbf{Z}}) )$.