# Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$

Proposition 7.6.4.1. Let $\operatorname{\mathcal{C}}$ be a locally Kan simplicial category and let $\sigma :$

$\xymatrix@R =50pt@C=50pt{ X_{01} \ar [r] \ar [d] & X_0 \ar [d] \\ X_1 \ar [r] & X }$

be a commutative diagram in $\operatorname{\mathcal{C}}$. The following conditions are equivalent:

$(1)$

The composite map

$\Delta ^1 \times \Delta ^1 \xrightarrow { \operatorname{N}_{\bullet }(\sigma ) } \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) \hookrightarrow \operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}})$

is a pullback square in the $\infty$-category $\operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}})$ (in the sense of Definition 7.6.3.1).

$(2)$

For every object $Y \in \operatorname{\mathcal{C}}$, the diagram of Kan complexes

$\xymatrix@R =50pt@C=50pt{ \operatorname{Hom}_{\operatorname{\mathcal{C}}}(Y, X_{01} )_{\bullet } \ar [r] \ar [d] & \operatorname{Hom}_{\operatorname{\mathcal{C}}}( Y, X_0 )_{\bullet } \ar [d] \\ \operatorname{Hom}_{\operatorname{\mathcal{C}}}( Y, X_1 )_{\bullet } \ar [r] & \operatorname{Hom}_{\operatorname{\mathcal{C}}}(Y,X)_{\bullet } }$

is a homotopy pullback square (in the sense of Definition 3.4.1.1).