Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Warning 7.6.5.10. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and suppose we are given an equalizer di

Definition 7.6.5.11 (Equalizer and Coequalizer Diagrams). Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. An equalizer diagram in $\operatorname{\mathcal{C}}$ is a limit diagram $( \bullet \rightrightarrows \bullet )^{\triangleleft } \rightarrow \operatorname{\mathcal{C}}$. A coequalizer diagram is a colimit diagram $( \bullet \rightrightarrows \bullet )^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$.

agram

7.66
\begin{equation} \begin{gathered}\label{equation:equalizer-not-in-homotopy} \xymatrix@C =50pt@R=50pt{ Z \ar [r]^-{g} & Y \ar@ <.4ex>[r]^-{f_0} \ar@ <-.4ex>[r]_-{f_1} & X } \end{gathered} \end{equation}

in $\operatorname{\mathcal{C}}$. Then the image of (7.66) in the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ need not be an equalizer diagram. In other words, the forgetful functor $\operatorname{\mathcal{C}}\rightarrow \operatorname{N}_{\bullet }( \mathrm{h} \mathit{\operatorname{\mathcal{C}}})$ does not preserve equalizer diagrams in general.