Proposition 7.6.4.14. Let $F_0, F_1: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{C}}$ be functors of $\infty $-categories, and let $G: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories satisfying $F_0 \circ G = F_1 \circ G$. The following conditions are equivalent:
- $(1)$
The resulting diagram of $\infty $-categories $( \bullet \rightrightarrows \bullet )^{\triangleleft } \rightarrow \operatorname{\mathcal{QC}}$ is an equalizer diagram.
- $(2)$
The commutative diagram
7.73\begin{equation} \begin{gathered}\label{equation:homotopy-equalizer-diagram} \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{E}}\ar [r]^-{G} \ar [d] & \operatorname{\mathcal{D}}\ar [d]^-{ (F_0, F_1) } \\ \operatorname{\mathcal{C}}\ar [r]^-{ (\operatorname{id}, \operatorname{id}) } & \operatorname{\mathcal{C}}\times \operatorname{\mathcal{C}}} \end{gathered} \end{equation}is a categorical pullback square (Definition 4.5.2.8).