Corollary 8.1.4.3. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. Then every degenerate $2$-simplex of $\operatorname{Cospan}(\operatorname{\mathcal{C}})$ is thin.
Proof. Let $\sigma $ be a $1$-simplex of $\operatorname{Cospan}^{L,R}(\operatorname{\mathcal{C}})$, corresponding to a diagram $X \xrightarrow {f} B \xleftarrow {g} Y$ in the $\infty $-category $\operatorname{\mathcal{C}}$ where $f$ belongs to $L$ and $g$ belongs to $R$. We will show that the left-degenerate $2$-simplex $s^{1}_0(\sigma )$ is thin; a similar argument will show that the right-degenerate $2$-simplex $s^{1}_1(\sigma )$ is thin (see Remark 8.1.3.4). Unwinding the definitions, we see that $s^{1}_0(\sigma )$ corresponds to a diagram in $\operatorname{\mathcal{C}}$ of the form
By virtue of Proposition 8.1.4.2, it will suffice to show that the inner region of the diagram is a pushout square in $\operatorname{\mathcal{C}}$. This follows from Corollary 7.6.2.27, since $\operatorname{id}_{B}$ and $\operatorname{id}_{X}$ are isomorphisms in $\operatorname{\mathcal{C}}$. $\square$