Lemma 8.1.5.1. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\sigma $ be a $2$-simplex of $\operatorname{Cospan}(\operatorname{\mathcal{C}})$, which we identify with a diagram $\varphi : \operatorname{Tw}( \Delta ^2) \rightarrow \operatorname{\mathcal{C}}$. If $\sigma $ is thin, then $\varphi $ is a colimit diagram.
Proof of Lemma 8.1.5.1. Let $Q$ denote the partially ordered set appearing in the proof of Lemma 8.1.4.4, so that we can identify $\operatorname{Tw}( \Lambda ^{2}_{1} )$ with the nerve of $Q$. Set $\varphi _0 = \varphi |_{ \operatorname{N}_{\bullet }(Q) }$. Assume that $\sigma $ is thin. We wish to show that the restriction map $\operatorname{\mathcal{C}}_{ \varphi /} \rightarrow \operatorname{\mathcal{C}}_{ \varphi _0/}$ is a trivial Kan fibration: that is, every lifting problem
admits a solution.
Let $K$ denote the coproduct $( \operatorname{Tw}( \Delta ^2) \star \operatorname{\partial \Delta }^ n) {\coprod }_{ ( \operatorname{N}_{\bullet }(Q) \star \operatorname{\partial \Delta }^ n) } (\operatorname{N}_{\bullet }(Q) \star \Delta ^ n)$, which we regard as a simplicial subset of $\operatorname{Tw}( \Delta ^2) \star \Delta ^ n$. Unwinding the definitions, we can identify the lifting problem (8.12) with a morphism of simplicial sets $\tau _0: K \rightarrow \operatorname{\mathcal{C}}$ satisfying $\tau _0|_{ \operatorname{Tw}( \Delta ^2) } = \varphi $. We wish to show that $\tau _0$ can be extended to a morphism $\tau : \operatorname{Tw}( \Delta ^{2} ) \star \Delta ^ n\rightarrow \operatorname{\mathcal{C}}$.
Let $\iota : \operatorname{Tw}( \Delta ^2) \star \Delta ^ n \rightarrow \operatorname{Tw}( \Delta ^{n+3} )$ be the morphism of simplicial sets given on vertices by the formula
The morphism $\iota $ has a left inverse $\rho : \operatorname{Tw}( \Delta ^{n+3}) \rightarrow \operatorname{Tw}(\Delta ^2) \star \Delta ^ n$, given on vertices by the formula
We observe that $\iota $ and $\rho $ restrict to morphisms of simplicial subsets
so that we have a commutative diagram of simplicial sets
where the horizontal compositions are equal to the identity.
The composition $\tau _0 \circ \rho _0$ can be identified with a morphism of simplicial sets $\psi _0: \Lambda ^{m+3}_{1} \rightarrow \operatorname{Cospan}(\operatorname{\mathcal{C}})$ having the property that the composition
coincides with $\sigma $. Since $\sigma $ is thin, we can extend $\psi _0$ to an $(n+3)$-simplex $\psi $ of $\operatorname{Cospan}(\operatorname{\mathcal{C}})$, which we identify with a map $\tau ': \operatorname{Tw}( \Delta ^{n+3} ) \rightarrow \operatorname{\mathcal{C}}$. It follows that the composition $\tau = \tau ' \circ \iota $ is a morphism $\operatorname{Tw}( \Delta ^{2} ) \star \Delta ^ n \rightarrow \operatorname{\mathcal{C}}$ satisfying $\tau |_{K} = \tau _0$. $\square$