Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 7.4.2.13 (Covariant Transport as a Kan Extension). Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an essentially small left fibration of $\infty $-categories, let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}$ be a functor, and let $\alpha : \underline{ \Delta ^0 }_{\operatorname{\mathcal{E}}} \rightarrow \mathscr {F}|_{\operatorname{\mathcal{E}}}$ be a natural transformation. Then $\alpha $ exhibits $\mathscr {F}$ as covariant transport representation for $U$ (in the sense of Definition 7.4.1.8) if and only if it exhibits $\mathscr {F}$ as a left Kan extension of $\underline{ \Delta ^0}_{\operatorname{\mathcal{E}}}$ along $U$ (in the sense of Variant 7.3.1.5).

Proof. Using Proposition 7.3.4.1, we can reduce to the special case where the $\infty $-category $\operatorname{\mathcal{C}}= \{ C\} $ consists of a single vertex. In this case, the desired result is a reformulation of Example 7.1.2.10. $\square$