Corollary 8.1.2.15. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. Then $F$ is fully faithful if and only if the diagram
is a categorical pullback square.
Corollary 8.1.2.15. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. Then $F$ is fully faithful if and only if the diagram
is a categorical pullback square.
Proof. Since the vertical maps in the diagram (8.3) are left fibrations (Proposition 8.1.1.11), it is a categorical pullback square if and only if, for every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, the induced map
is a homotopy equivalence of Kan complexes (Corollary 5.1.7.16). Using Notation 8.1.2.14, we see that this is equivalent to the requirement that $F$ induces a homotopy equivalence $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{D}}}( F(X), F(Y) )$. $\square$