Warning 8.2.0.2. If $\operatorname{\mathcal{C}}$ is an ordinary category, the Yoneda embedding
is given by a completely explicit construction. Beware that in the $\infty $-categorical setting, the Yoneda embedding depends on a choice of covariant transport representation for the twisted arrow fibration $\operatorname{Tw}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{C}}$, which is well-defined only up to isomorphism. However, it is sometimes possible to eliminate this ambiguity. In ยง8.2.4, we study the case where $\operatorname{\mathcal{C}}= \operatorname{N}_{\bullet }^{\operatorname{hc}}( \operatorname{\mathcal{C}}_0 )$ is the homotopy coherent nerve of a locally Kan simplicial category $\operatorname{\mathcal{C}}_0$. In this case, we give a concrete example of a $\operatorname{Hom}$-functor for $\operatorname{\mathcal{C}}$, obtained as the homotopy coherent nerve of the functor
determined by the simplicial enrichment of $\operatorname{\mathcal{C}}_0$ (see Proposition 8.2.4.2).