Corollary 8.4.2.2. Let $\operatorname{\mathcal{C}}$ be a locally small $\infty $-category and let $\operatorname{Fun}^{\mathrm{rep}}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}) \subseteq \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}})$ denote the full subcategory spanned by the representable functors. Then $\operatorname{Fun}^{\mathrm{rep}}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}})$ is a dense subcategory of $\operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}})$.
Proof. By virtue of Example 8.4.1.16, it will suffice to show that the inclusion map $\operatorname{Fun}^{\mathrm{rep}}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}) \hookrightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}})$ is a dense functor. Since the covariant Yoneda embedding $h_{\bullet }: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}^{\mathrm{rep}}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}})$ is an equivalence of $\infty $-categories (Theorem 8.3.3.13), this is equivalent to the assertion that $h_{\bullet }$ is a dense functor from $\operatorname{\mathcal{C}}$ to $\operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}})$ (Remark 8.4.1.18), which follows from Theorem 8.4.2.1. $\square$