Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 6.2.2.8. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $\operatorname{\mathcal{C}}' \subseteq \operatorname{\mathcal{C}}$ be a full subcategory, and let $f: X \rightarrow Y$ be a morphism in $\operatorname{\mathcal{C}}$, where $Y \in \operatorname{\mathcal{C}}'$. The following conditions are equivalent:

$(1)$

The morphism $f$ exhibits $Y$ as a $\operatorname{\mathcal{C}}'$-reflection of $X$, in the sense of Definition 6.2.2.1.

$(2)$

For every object $Z \in \operatorname{\mathcal{C}}'$, the restriction map $\operatorname{\mathcal{C}}_{f/} \times _{\operatorname{\mathcal{C}}} \{ Z\} \rightarrow \operatorname{\mathcal{C}}_{X/} \times _{\operatorname{\mathcal{C}}} \{ Z\} $ is a homotopy equivalence of Kan complexes.

$(3)$

The restriction map $u: \operatorname{\mathcal{C}}_{f/} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}' \rightarrow \operatorname{\mathcal{C}}_{X/} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}'$ is an equivalence of $\infty $-categories.

$(4)$

The restriction map $u$ is a trivial Kan fibration.

$(5)$

For $n \geq 2$, every morphism of simplicial sets $\sigma _0: \Lambda ^{n}_{0} \rightarrow \operatorname{\mathcal{C}}$ can be extended to an $n$-simplex of $\operatorname{\mathcal{C}}$, provided that $\sigma _0$ carries the initial edge $\Delta ^1 = \operatorname{N}_{\bullet }( \{ 0 < 1 \} )$ to the morphism $f$ and satisfies $\sigma _0(i) \in \operatorname{\mathcal{C}}'$ for $i \geq 2$.

Proof. The equivalence $(1) \Leftrightarrow (2)$ follows from Proposition 4.6.9.16, the equivalence $(2) \Leftrightarrow (3)$ from Corollary 5.1.7.15 (and Proposition 5.1.7.5). Corollary 4.3.6.11 guarantees that $u$ is a left fibration. In particular, it is an isofibration, so the equivalence $(3) \Leftrightarrow (4)$ is a special case of Proposition 4.5.5.20. The equivalence $(4) \Leftrightarrow (5)$ follows by unwinding definitions. $\square$