Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Definition 6.2.5.1. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $S$ be a collection of morphisms of $\operatorname{\mathcal{C}}$. An $S$-optimal factorization of $f$ is a $2$-simplex

6.2
\begin{equation} \begin{gathered}\label{equation:S-optimal} \xymatrix@R =50pt@C=50pt{ & Y \ar [dr]^{s} & \\ X \ar [ur]^{g} \ar [rr]^{f} & & Z } \end{gathered} \end{equation}

of $\operatorname{\mathcal{C}}$, corresponding to a morphism $\widetilde{g}: \widetilde{X} \rightarrow \widetilde{Y}$ in the $\infty $-category $\operatorname{\mathcal{C}}_{/Z}$ with the following properties:

  • The morphism $s: Y \rightarrow Z$ belongs to $S$.

  • Let $\widetilde{Y}'$ be an object of $\operatorname{\mathcal{C}}_{/Z}$ corresponding to a morphism $s': Y' \rightarrow Z$ which belongs to $S$. Then composition with $\widetilde{g}$ induces a homotopy equivalence of Kan complexes

    \[ \operatorname{Hom}_{ \operatorname{\mathcal{C}}_{/Z} }(\widetilde{Y}, \widetilde{Y}') \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{C}}_{/Z} }( \widetilde{X}, \widetilde{Y}' ). \]

If these conditions are satisfied, we say that the diagram (6.2) is an $S$-optimal factorization of $f$.