Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Theorem 6.2.5.10. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $S$ be a class of short morphisms for $\operatorname{\mathcal{C}}$. Then the inclusion map $\operatorname{\mathcal{C}}^{\mathrm{short}} \hookrightarrow \operatorname{\mathcal{C}}$ is an inner anodyne morphism of simplicial sets.

Proof of Theorem 6.2.5.10. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $S$ be a class of short morphisms for $\operatorname{\mathcal{C}}$. For every nonnegative integer $p$, let $\operatorname{\mathcal{C}}^{\leq p}$ denote the smallest simplicial subset of $\operatorname{\mathcal{C}}$ which contains all simplices of priority $\leq p$ (so that a nondegenerate simplex of $\operatorname{\mathcal{C}}$ belongs to $\operatorname{\mathcal{C}}^{\leq p}$ if and only if it has priority $\leq p$). Then $\operatorname{\mathcal{C}}$ is the colimit of the sequence of inclusion maps

\[ \operatorname{\mathcal{C}}^{\mathrm{short}} = \operatorname{\mathcal{C}}^{\leq 0} \hookrightarrow \operatorname{\mathcal{C}}^{\leq 1} \hookrightarrow \operatorname{\mathcal{C}}^{\leq 2} \hookrightarrow \cdots \]

We will complete the proof by showing that each of these inclusion maps is inner anodyne. For the remainder of the proof, we fix a positive integer $p$; our goal is to show that the inclusion map $\operatorname{\mathcal{C}}^{\leq p-1} \hookrightarrow \operatorname{\mathcal{C}}^{\leq p}$ is inner anodyne.

Choose a function $\sigma \mapsto \sigma ^{+}$ satisfying the requirements of Lemma 6.2.5.15. For each integer $n \geq 0$, let $\operatorname{\mathcal{C}}^{\leq p}(n)$ denote the simplicial subset of $\operatorname{\mathcal{C}}^{\leq p}$ generated by $\operatorname{\mathcal{C}}^{\leq p-1}$ together with all simplices of the form $\sigma ^{+}$, where $\sigma $ is a simplex of $\operatorname{\mathcal{C}}$ having priority $p$ and dimension $\leq n$. By virtue of requirement $(2)$ of Lemma 6.2.5.15, it suffices to allow $\sigma $ to range over nondegenerate simplices which satisfy these conditions. Note that each $\operatorname{\mathcal{C}}^{\leq p}(n)$ contains the $n$-skeleton of $\operatorname{\mathcal{C}}^{\leq p}$, so that $\operatorname{\mathcal{C}}^{\leq p}$ can be realized as the colimit of the sequence

\[ \operatorname{\mathcal{C}}^{\leq p-1} = \operatorname{\mathcal{C}}^{\leq p}(0) \hookrightarrow \operatorname{\mathcal{C}}^{\leq p}(1) \hookrightarrow \operatorname{\mathcal{C}}^{\leq p}(2) \hookrightarrow \operatorname{\mathcal{C}}^{\leq p}(3) \hookrightarrow \cdots \]

It will therefore suffice to show that each of these inclusions is inner anodyne. For the remainder of the proof, we fix an integer $n > 0$; our goal is to show that the inclusion map $\operatorname{\mathcal{C}}^{\leq p}(n-1) \hookrightarrow \operatorname{\mathcal{C}}^{\leq p}(n)$ is inner anodyne.

Let $\{ \sigma _{t} \} _{t \in T}$ denote the collection of $n$-simplices of $\operatorname{\mathcal{C}}$ which have priority $p$ but are not contained in $\operatorname{\mathcal{C}}^{\leq p}(n-1)$. We first claim that $\operatorname{\mathcal{C}}^{\leq p}(n)$ is generated by $\operatorname{\mathcal{C}}^{\leq p}(n-1)$ together with the collection of $(n+1)$-simplices $\{ \sigma _{t}^{+} \} _{t \in T}$. To prove this, it suffices to show that if $\sigma $ is an $n$-simplex of $\operatorname{\mathcal{C}}$ which belongs to $\operatorname{\mathcal{C}}^{\leq p}(n-1)$, then $\sigma ^{+}$ also belongs to $\operatorname{\mathcal{C}}^{\leq p}(n-1)$. If $\sigma $ is degenerate, then we can write $\sigma ^{+} = s^{n}_ i( \sigma _0^{+} )$ when $\sigma _0$ is an $(n-1)$-simplex of $\operatorname{\mathcal{C}}$ having priority $\leq p$ (Lemma 6.2.5.15), and the desired conclusion follows from the observation that $\sigma _0^{+}$ is contained in $\operatorname{\mathcal{C}}^{\leq p}(n-1)$. We may therefore assume that $\sigma $ is a nondegenerate $n$-simplex of $\operatorname{\mathcal{C}}$. If $\sigma $ has priority $< p$, then $\sigma ^{+}$ also has priority $< p$ and is therefore contained in $\operatorname{\mathcal{C}}^{\leq p-1}$. We may therefore assume that $\sigma $ has priority $p$, and must therefore be of the form $\tau ^{+}$ where $\tau $ is an $(n-1)$-simplex of $\operatorname{\mathcal{C}}$ having priority $p$. Condition $(3)$ of Lemma 6.2.5.15 then guarantees that $\sigma ^{+}$ can be obtained from $\sigma $ by applying a degeneracy operator, and is therefore contained in $\operatorname{\mathcal{C}}^{\leq p}(n-1)$ as desired.

For each $t \in T$, we define the complexity of $t$ to be the integer $c(t) = \sum _{ q = p}^{n} \ell ( \sigma _{t}(p-1) \rightarrow \sigma _{t}(q) )$. Using Proposition 4.7.1.35, we can choose a well-ordering on $T$ for which the complexity function

\[ c: T \rightarrow \operatorname{\mathbf{Z}}_{\geq 0} \quad \quad t \mapsto c(t) \]

is nondecreasing. For each $t \in T$, let $\operatorname{\mathcal{C}}^{\leq p}_{\leq t}(n)$ denote the simplicial subset of $\operatorname{\mathcal{C}}^{\leq p}(n)$ generated by $\operatorname{\mathcal{C}}^{\leq p}(n-1)$ together with the simplices $\sigma _{s}^{+}$ for $s \leq t$, and define $\operatorname{\mathcal{C}}^{\leq p}_{< t}(n)$ similarly. Then the inclusion map $\operatorname{\mathcal{C}}^{\leq p}(n-1) \hookrightarrow \operatorname{\mathcal{C}}^{\leq p}(n)$ can be realized as a transfinite composition of inclusion maps $\{ \operatorname{\mathcal{C}}^{\leq p}_{< t}(n) \hookrightarrow \operatorname{\mathcal{C}}^{\leq p}_{\leq t}(n) \} _{t \in T}$. It will therefore suffice to show that each of these inclusion maps is inner anodyne.

Fix an element $t \in T$ and let $L_{t} \subseteq \Delta ^{n+1}$ be the inverse image of $\operatorname{\mathcal{C}}^{\leq p}_{< t}(n)$ under the map $\sigma _{t}^{+}: \Delta ^{n+1} \rightarrow \operatorname{\mathcal{C}}$, so that we have a pullback diagram of simplicial sets

6.10
\begin{equation} \begin{gathered}\label{equation:short-morphisms} \xymatrix { L_{t} \ar [r] \ar [d] & \operatorname{\mathcal{C}}^{\leq p}_{< t}(n) \ar [d] \\ \Delta ^{n+1} \ar [r]^{ \sigma _{t}^{+} } & \operatorname{\mathcal{C}}^{\leq p}_{\leq t}(n). } \end{gathered} \end{equation}

We will complete the proof by showing that $L_{t}$ coincides with the inner horn $\Lambda ^{n+1}_{p} \subseteq \Delta ^{n+1}$, so that the diagram (6.10) is also a pushout square (Lemma 3.1.2.11). This is equivalent to the following more concrete assertion:

$(\ast _{t})$

For $0 \leq i \leq n+1$, the $n$-simplex $d^{n+1}_{i}( \sigma _{t}^{+} )$ belongs to $\operatorname{\mathcal{C}}^{\leq p}_{< t}(n)$ if and only if $i \neq p$.

Our proof proceeds by induction on $t$. We consider several cases:

  • For $0 \leq i < p$, the $n$-simplex $d^{n+1}_ i( \sigma _{t}^{+} )$ has priority $< p$, and is therefore contained in $\operatorname{\mathcal{C}}^{< p} \subseteq \operatorname{\mathcal{C}}^{\leq p}(n-1) \subseteq \operatorname{\mathcal{C}}^{\leq p}_{< t}(n)$.

  • For $i = p$, the $n$-simplex $d^{n+1}_ i( \sigma _{t}^{+} )$ coincides with $\sigma _{t}$ (Lemma 6.2.5.15), which is not contained in $\operatorname{\mathcal{C}}^{\leq p}(n-1)$. Consequently, if $\sigma _{t}$ is contained in $\operatorname{\mathcal{C}}^{\leq p}_{< t}(n-1)$, then there exists some $t' < t$ such that $\sigma _{t}$ is contained in $\operatorname{\mathcal{C}}^{\leq p}_{\leq t'}(n-1)$ but not in $\operatorname{\mathcal{C}}^{\leq p}_{< t'}(n-1)$. Applying our inductive hypothesis, we deduce that $\sigma _{t} = \sigma _{t'}$, which contradicts the inequality $t' < t$.

  • For $p < i \leq n$, condition $(1)$ of Lemma 6.2.5.15 implies that $d^{n+1}_ i( \sigma _{t}^{+} )$ coincides with $d^{n}_{i-1}( \sigma _{t} )^{+}$, and therefore belongs to $\operatorname{\mathcal{C}}^{\leq p}(n-1) \subseteq \operatorname{\mathcal{C}}^{\leq p}_{< t}(n)$.

  • Suppose that $i = n+1$ and set $\tau = d^{n+1}_{i}( \sigma _{t}^{+} )$; we wish to show that $\tau $ is contained in $\operatorname{\mathcal{C}}^{\leq p}_{< t}(n)$. Note that $\tau $ has priority $\leq p$. If $\tau $ is contained in $\operatorname{\mathcal{C}}^{\leq p}(n-1)$, there is nothing to prove. We may therefore assume without loss of generality that $\tau $ is contained in $T$: that is, we have $\tau = \sigma _{t'}$ for some $t' \in T$. Set $X = \sigma _{t}(p-1) = \sigma _{t'}(p-1)$. For $p \leq q \leq n$, let $f_{q}: X \rightarrow \sigma _{t}(q)$ be the morphism determined by $\sigma _{t}$, and define $f'_{q}: X \rightarrow \sigma _{t'}(q)$ similarly. By construction, the morphism $f_{q}$ coincides with $f'_{q+1}$ for $p \leq q < n$. Moreover, the restriction of $\sigma _{t}^{+}$ to the $2$-simplex $\operatorname{N}_{\bullet }( \{ p-1 < p < n+1 \} $ determines a diagram

    \[ \xymatrix { & \sigma _{t'}(p) \ar [dr] & \\ X \ar [ur]^{ f'_{p} } \ar [rr]^{ f_{n} } & & \sigma _{t}(n) } \]

    which is an $S$-optimal factorization of $f_ n$, so that $\ell ( f'_{p} ) = \ell ( f_ n ) - 1$ by virtue of Lemma 6.2.5.13. It follows that the complexity $c(\sigma _{t'} )$ is given by

    \begin{eqnarray*} c(\sigma _{t'} ) & = & \sum _{q = p}^{n} \ell ( f'_{q} ) \\ & = & \ell (f'_ p) + \sum _{ q = p+1}^{n} \ell (f'_ q) \\ & = & \ell ( f_ n ) - 1 + \sum _{ q = p}^{n-1} \ell ( f_ q ) \\ & = & ( \sum _{q = p}^{n} \ell (f_ q) ) - 1 \\ & = & c(\sigma _{t} ) - 1. \end{eqnarray*}

    We therefore have $t' < t$, so that $\tau = \sigma _{t'} = d^{n+1}_ p( \sigma _{t'}^{+} )$ is contained in $\operatorname{\mathcal{C}}^{\leq p}_{\leq t'}(n) \subseteq \operatorname{\mathcal{C}}^{\leq p}_{< t}(n)$.

$\square$