Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 8.5.2.8. Let $\operatorname{\mathcal{C}}$ be a category and let $e: X \rightarrow X$. be an idempotent endomorphism in $\operatorname{\mathcal{C}}$. Then there is a unique functor $F: \operatorname{Idem}\rightarrow \operatorname{\mathcal{C}}$ satisfying $F(\widetilde{X}) = X$ and $F( \widetilde{e}) = e$.