Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 8.5.4.4. Let $X$ be a Kan complex. Since the simplicial set $\operatorname{N}_{\bullet }(\operatorname{Idem})$ is weakly contractible (Remark 8.5.3.4), every morphism of simplicial sets $\operatorname{N}_{\bullet }( \operatorname{Idem}) \rightarrow X$ is homotopic to a constant map. It follows that $X$ is idempotent complete when viewed as an $\infty $-category.