Remark 8.5.4.5. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. Then $\operatorname{\mathcal{C}}$ is idempotent complete if and only if the opposite $\infty $-category $\operatorname{\mathcal{C}}^{\operatorname{op}}$ is idempotent complete.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$