Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 8.5.4.7. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. The following conditions are equivalent:

$(1)$

The $\infty $-category $\operatorname{\mathcal{C}}$ is idempotent complete.

$(2)$

The $\infty $-category $\operatorname{\mathcal{C}}$ admits limits indexed by $\operatorname{N}_{\bullet }( \operatorname{Idem})$.

$(3)$

The $\infty $-category $\operatorname{\mathcal{C}}$ admits colimits indexed by $\operatorname{N}_{\bullet }( \operatorname{Idem})$.

Proof. This is an immediate consequence of Corollary 8.5.3.11. $\square$