Remark 11.5.0.39 (Isomorphism Invariance). Let $H: \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$ be a functor of $\infty $-categories, and let $H': \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$ be another functor which is isomorphic to $H$ (as an object of the $\infty $-category $\operatorname{Fun}( \operatorname{\mathcal{C}}, \widehat{\operatorname{\mathcal{C}}} )$). Then $H$ exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an idempotent completion of $\operatorname{\mathcal{C}}$ if and only if $H'$ exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an idempotent completion of $\operatorname{\mathcal{C}}$.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$