Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 8.5.5.3 (Existence). Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. Then there exists a functor $H: \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$ which exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an idempotent completion of $\operatorname{\mathcal{C}}$.

Proof. By virtue of Proposition 8.5.5.2 (and its proof), this is a special case of Proposition 8.4.5.3 $\square$