Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Lemma 11.5.0.14. Let $H: \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$ be a fully faithful functor of $\infty $-categories. Suppose that every object $Y \in \widehat{\operatorname{\mathcal{C}}}$ is a retract of $H(X)$, for some object $X \in \operatorname{\mathcal{C}}$. Then, for any $\infty $-category $\operatorname{\mathcal{D}}$, precomposition with $H$ determines a fully faithful functor $\theta : \operatorname{Fun}( \widehat{\operatorname{\mathcal{C}}}, \operatorname{\mathcal{D}}) \rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$. Moreover, the essential image of $\theta $ consists of those functors $G: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ which satisfy the following condition:

$(\ast )$

For every functor $F: \operatorname{N}_{\bullet }( \operatorname{Idem}) \rightarrow \operatorname{\mathcal{C}}$, if $H \circ F$ is a split idempotent in $\widehat{\operatorname{\mathcal{C}}}$, then $G \circ F$ is a split idempotent in $\operatorname{\mathcal{D}}$.

Proof. Without loss of generality, we may assume that $\operatorname{\mathcal{C}}$ is a full subcategory of $\widehat{\operatorname{\mathcal{C}}}$ and that $H$ is the inclusion functor. Let $\operatorname{Fun}'( \operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$ denote the full subcategory of $\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$ spanned by those functors $G: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ which admit an extension $\widehat{G}: \widehat{\operatorname{\mathcal{C}}} \rightarrow \operatorname{\mathcal{D}}$. It follows from Proposition 8.5.1.8 that, in this case, the functor $\widehat{G}$ is automatically left (and right) Kan extended from $\operatorname{\mathcal{C}}$. Applying Corollary 7.3.6.15, we deduce that the restriction functor $\theta : \operatorname{Fun}( \widehat{\operatorname{\mathcal{C}}}, \operatorname{\mathcal{D}}) \rightarrow \operatorname{Fun}'(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$ is a trivial Kan extension. Note that any functor $\widehat{G}: \widehat{\operatorname{\mathcal{C}}} \rightarrow \operatorname{\mathcal{D}}$ carries split idempotents in $\widehat{\operatorname{\mathcal{C}}}$ to split idempotents in $\operatorname{\mathcal{D}}$, so that $G = \widehat{G}|_{\operatorname{\mathcal{C}}}$ satisfies condition $(\ast )$. To complete the proof, it will suffice to prove the reverse implication. Fix a functor $G: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ which satisfies condition $(\ast )$; we wish to show that $G$ admits an extension $\widehat{G}: \widehat{\operatorname{\mathcal{C}}} \rightarrow \operatorname{\mathcal{D}}$.

Choose an uncountable regular cardinal $\kappa $ for which $\operatorname{\mathcal{C}}$ is essentially $\kappa $-small. Using Proposition 8.5.4.7, we can choose a fully faithful functor $H': \operatorname{\mathcal{D}}\rightarrow \widehat{\operatorname{\mathcal{D}}}$, where the $\infty $-category $\widehat{\operatorname{\mathcal{D}}}$ admits $\kappa $-small colimits. Replacing $\operatorname{\mathcal{D}}$ by the essential image of $H'$, we may assume without loss of generality that $\operatorname{\mathcal{D}}$ is a replete full subcategory of $\widehat{\operatorname{\mathcal{D}}}$. Invoking Proposition 7.6.7.13, we deduce that the functor $G: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}\subseteq \widehat{\operatorname{\mathcal{D}}}$ admits a left Kan extension $\widehat{G}: \widehat{\operatorname{\mathcal{C}}} \rightarrow \widehat{\operatorname{\mathcal{D}}}$. We will complete the proof by showing that $\widehat{G}$ factors through $\operatorname{\mathcal{D}}$.

Fix an object $Y \in \widehat{\operatorname{\mathcal{C}}}$; we wish to show that $\widehat{G}(Y)$ belongs to $\operatorname{\mathcal{D}}$. By assumption, there exists a retraction diagram

11.5
\begin{equation} \begin{gathered}\label{equation:universal-mapping-property-of-idempotent-completion} \xymatrix@R =50pt@C=50pt{ & Y \ar [dr]^{i} & \\ X \ar [ur]^{r} \ar [rr]^{ \operatorname{id}_{X} } & & X } \end{gathered} \end{equation}

in $\widehat{\operatorname{\mathcal{C}}}$, where the object $X$ belongs to $\operatorname{\mathcal{C}}$. Using Corollary 8.5.1.28, we can extend (11.5) to a functor $\overline{F}: \operatorname{N}_{\bullet }( \operatorname{Ret}) \rightarrow \overline{\operatorname{\mathcal{C}}}$. Then $F = \overline{F}|_{ \operatorname{N}_{\bullet }( \operatorname{Idem}) }$ is an idempotent in $\operatorname{\mathcal{C}}$ which splits in $\widehat{\operatorname{\mathcal{C}}}$. Invoking assumption $(\ast )$, we deduce that $G \circ F$ is a split idempotent in $\operatorname{\mathcal{D}}$. That is, there exists a functor $\overline{F}': \operatorname{N}_{\bullet }( \operatorname{Ret}) \rightarrow \operatorname{\mathcal{D}}$ satisfying $\overline{F}' |_{ \operatorname{N}_{\bullet }( \operatorname{Idem}) } = G \circ F$. Applying Corollary 8.5.3.10, we deduce that $\widehat{G} \circ \overline{F}$ is isomorphic to $\overline{F}'$ as an object of the $\infty $-category $\operatorname{Fun}( \operatorname{N}_{\bullet }( \operatorname{Ret}), \widehat{\operatorname{\mathcal{D}}} )$. Evaluating on the final object of $\operatorname{Ret}$, we deduce that $\widehat{G}(Y)$ is isomorphic to an object of $\operatorname{\mathcal{D}}$ and therefore belongs to $\operatorname{\mathcal{D}}$ (since the full subcategory $\operatorname{\mathcal{D}}\subseteq \widehat{\operatorname{\mathcal{D}}}$ was assumed to be replete). $\square$