Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 8.5.7.7. Let $X$ be a connected Kan complex and let $e: X \rightarrow X$ be a homotopy idempotent endomorphism in the $\infty $-category $\operatorname{\mathcal{S}}$. Then $e$ is idempotent if and only if it can be lifted to a homotopy endomorphism endomorphism $\widetilde{e}: (X,x) \rightarrow (X,x)$ in the $\infty $-category $\operatorname{\mathcal{S}}_{\ast }$.

Proof. Let $\widetilde{e}: (X,x) \rightarrow (X,x)$ be a lift of $e$ to a morphism in the $\infty $-category $\operatorname{\mathcal{S}}_{\ast }$. If $\widetilde{e}$ is homotopy idempotent, then it is idempotent (Corollary 8.5.7.6), so that $e$ is also idempotent. For the converse, suppose that $e$ is idempotent: that is, it can be extended to a functor $F: \operatorname{N}_{\bullet }( \operatorname{Idem}) \rightarrow \operatorname{\mathcal{C}}$. Since the $\infty $-category $\operatorname{\mathcal{S}}$ admits small colimits (Corollary 7.4.3.3), the idempotent $F$ splits. Consequently, there is a retraction diagram

8.67
\begin{equation} \begin{gathered}\label{equation:non-coherent-idempotent} \xymatrix@R =50pt@C=50pt{ & X \ar [dr]^{r} & \\ Y \ar [ur]^{i} \ar [rr]^{ \operatorname{id}_{Y} } & & Y } \end{gathered} \end{equation}

in the $\infty $-category of spaces $\operatorname{\mathcal{S}}$, where $e$ is homotopic to the composition $(i \circ r): X \rightarrow X$. Fix vertices $x \in X$ and $y \in Y$. Since $X$ is connected, we can lift $i$ to a morphism $\widetilde{i}: (Y,y) \rightarrow (X,x)$ in the $\infty $-category $\operatorname{\mathcal{S}}_{\ast }$ (see Example 5.5.3.4). Since the forgetful functor $\operatorname{\mathcal{S}}_{\ast } \rightarrow \operatorname{\mathcal{S}}$ is a left fibration, we can lift (8.67) to a retraction diagram

\[ \xymatrix@R =50pt@C=50pt{ & (X,x) \ar [dr]^{ \widetilde{r} } & \\ (Y,y) \ar [ur]^{ \widetilde{i} } \ar [rr]^{ \operatorname{id}} & & (Y,y) } \]

in the $\infty $-category $\operatorname{\mathcal{S}}_{\ast }$. It follows that $e$ can be lifted to a (split) homotopy idempotent in $\operatorname{\mathcal{S}}_{\ast }$, given by any composition of $\widetilde{r}$ with $\widetilde{i}$. $\square$