Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 8.5.9.6. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. Then composition with the partial idempotent $\iota $ of Notation 8.5.9.4 induces a trivial Kan fibration of $\infty $-categories

\[ \operatorname{Fun}( \operatorname{N}_{\bullet }^{\operatorname{D}}( B \mathrm{Dy} ), \operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}( \operatorname{N}_{\leq 2}(\operatorname{Idem}), \operatorname{\mathcal{C}}). \]

Proof. Combine Theorem 8.5.9.5 with Corollary 4.5.5.19 (noting that $\iota $ is a monomorphism of simplicial sets). $\square$