Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Construction 8.2.0.3. Let $G: \operatorname{\mathcal{C}}_{+} \rightarrow \operatorname{\mathcal{C}}_{-}$ be a functor of $\infty $-categories. Pulling back the left fibration $\operatorname{Tw}(\operatorname{\mathcal{C}}_{-} ) \rightarrow \operatorname{\mathcal{C}}_{-}^{\operatorname{op}} \times \operatorname{\mathcal{C}}_{-}$ of Proposition 8.1.1.11, we obtain a left fibration of $\infty $-categories

\[ \lambda _{G}: \operatorname{Tw}(\operatorname{\mathcal{C}}_{-}) \times _{ \operatorname{\mathcal{C}}_{-} } \operatorname{\mathcal{C}}_{+} \rightarrow \operatorname{\mathcal{C}}_{-}^{\operatorname{op}} \times \operatorname{\mathcal{C}}_{+}, \]

which we regard as a coupling of $\operatorname{\mathcal{C}}_{+}$ with $\operatorname{\mathcal{C}}_{-}$. We will refer to $\lambda _{G}$ as the coupling associated to the functor $G$.