Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Definition 8.2.2.1. Let $\lambda : \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}_{-} \times \operatorname{\mathcal{C}}_{+}$ and $\mu : \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{D}}^{\operatorname{op}}_{-} \times \operatorname{\mathcal{D}}_{+}$ be couplings of $\infty $-categories. A morphism of couplings from $\lambda $ to $\mu $ is a triple of functors

\[ F_{-}: \operatorname{\mathcal{C}}_{-} \rightarrow \operatorname{\mathcal{D}}_{-} \quad \quad F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}\quad \quad F_{+}: \operatorname{\mathcal{C}}_{+} \rightarrow \operatorname{\mathcal{D}}_{+} \]

for which the diagram

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}\ar [r]^-{F} \ar [d]^{\lambda } & \operatorname{\mathcal{D}}\ar [d]^{\mu } \\ \operatorname{\mathcal{C}}^{\operatorname{op}}_{-} \times \operatorname{\mathcal{C}}_{+} \ar [r]^-{F^{\operatorname{op}}_{-} \times F_{+}} & \operatorname{\mathcal{D}}^{\operatorname{op}}_{-} \times \operatorname{\mathcal{D}}_{+} } \]

is commutative. Note that such diagrams can be identified with the vertices of a simplicial set $\operatorname{Fun}_{\pm }(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$, defined by the formula

\[ \operatorname{Fun}_{\pm }(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}}) = \operatorname{Fun}( \operatorname{\mathcal{C}}_{-}, \operatorname{\mathcal{D}}_{-} )^{\operatorname{op}} \times _{ \operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{D}}^{\operatorname{op}}_{-} )} \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}}) \times _{ \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}}_{+} ) } \operatorname{Fun}( \operatorname{\mathcal{C}}_{+}, \operatorname{\mathcal{D}}_{+} ). \]