Remark 8.2.2.3 (Functor Couplings). Let $\lambda : \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}_{-} \times \operatorname{\mathcal{C}}_{+}$ and $\mu : \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{D}}^{\operatorname{op}}_{-} \times \operatorname{\mathcal{D}}_{+}$ be couplings of $\infty $-categories. Proposition 8.2.2.2 asserts that the induced map
is also a coupling of $\infty $-categories. Moreover, it is characterized by a universal property: for every coupling of $\infty $-categories $\kappa : \operatorname{\mathcal{B}}\rightarrow \operatorname{\mathcal{B}}^{\operatorname{op}}_{-} \times \operatorname{\mathcal{B}}_{+}$, there is a canonical isomorphism of simplicial sets
where the right hand side is defined using the product coupling