Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Variant 8.3.2.6. Let $\operatorname{\mathcal{C}}_{-}$ and $\operatorname{\mathcal{C}}_{+}$ be $\infty $-categories, and let $\kappa $ be an uncountable cardinal. Then the construction of Example 8.3.2.4 induces a monomorphism

\[ \xymatrix@C =50pt@R=50pt{ \{ \textnormal{Profunctors $\mathscr {K}: \operatorname{\mathcal{C}}_{-}^{\operatorname{op}} \times \operatorname{\mathcal{C}}_{+} \rightarrow \operatorname{\mathcal{S}}^{< \kappa }$} \} / \textnormal{Isomorphism} \ar [d] \\ \{ \textnormal{Couplings $\lambda : \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}_{-}^{\operatorname{op}} \times \operatorname{\mathcal{C}}_{+}$} \} / \textnormal{Equivalence}, } \]

whose image consists of equivalence classes of couplings $\lambda : \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}_{-}^{\operatorname{op}} \times \operatorname{\mathcal{C}}_{+}$ whose fibers are essentially $\kappa $-small.