Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

4.7.9 Small Fibrations

It will sometimes be convenient to work with a relative version of Definition 4.7.5.1.

Definition 4.7.9.1. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an inner fibration of simplicial sets and let $\kappa $ be an uncountable cardinal. We say that $U$ is essentially $\kappa $-small if, for every simplex $\sigma : \Delta ^ n \rightarrow \operatorname{\mathcal{C}}$, the $\infty $-category $\Delta ^ n \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ is essentially $\kappa $-small. We say that $U$ is locally $\kappa $-small if, for every simplex $\sigma : \Delta ^ n \rightarrow \operatorname{\mathcal{C}}$, the $\infty $-category $\Delta ^ n \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ is locally $\kappa $-small.

Variant 4.7.9.2. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an inner fibration of simplicial sets. We say that $U$ is essentially small if, for every simplex $\sigma : \Delta ^ n \rightarrow \operatorname{\mathcal{C}}$, the $\infty $-category $\Delta ^ n \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ is essentially small. We say that $U$ is locally small if, for every $n$-simplex $\sigma : \Delta ^ n \rightarrow \operatorname{\mathcal{C}}$, the $\infty $-category $\Delta ^ n \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ is locally small.

Remark 4.7.9.3. Let $\kappa $ be an uncountable cardinal and suppose we are given a pullback diagram of simplicial sets

\[ \xymatrix { \operatorname{\mathcal{E}}' \ar [d]^{U'} \ar [r] & \operatorname{\mathcal{E}}\ar [d]^{U} \\ \operatorname{\mathcal{C}}' \ar [r] & \operatorname{\mathcal{C}}, } \]

where $U$ and $U'$ are inner fibrations. If $U$ is essentially $\kappa $-small, then $U'$ is essentially $\kappa $-small. If $U$ is locally $\kappa $-small, then $U'$ is locally $\kappa $-small.

Example 4.7.9.4. Let $\kappa $ be an uncountable cardinal. Then an $\infty $-category $\operatorname{\mathcal{E}}$ is locally $\kappa $-small (in the sense of Definition 4.7.8.1) if and only if the inner fibration $U: \operatorname{\mathcal{E}}\rightarrow \Delta ^0$ is locally $\kappa $-small (in the sense of Definition 4.7.9.1). Similarly, $\operatorname{\mathcal{E}}$ is essentially $\kappa $-small (in the sense of Definition 4.7.5.1) if and only if $U$ is essentially $\kappa $-small.

Example 4.7.9.5. Let $\kappa $ be an uncountable cardinal and let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an inner fibration of $\infty $-categories. If $\operatorname{\mathcal{E}}$ and $\operatorname{\mathcal{C}}$ are essentially $\kappa $-small, then $U$ is essentially $\kappa $-small. To prove this, we observe that for every $n$-simplex $\sigma : \Delta ^ n \rightarrow \operatorname{\mathcal{C}}$, Proposition 4.6.2.8 supplies a fully faithful functor

\[ \operatorname{\mathcal{E}}_{\sigma } = \Delta ^ n \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}\rightarrow \Delta ^ n \times _{ \operatorname{\mathcal{C}}}^{\mathrm{h}} \operatorname{\mathcal{E}}. \]

It follows from Corollary 4.7.5.16 that the homotopy fiber product $\Delta ^ n \times _{ \operatorname{\mathcal{C}}}^{\mathrm{h}} \operatorname{\mathcal{E}}$ is essentially $\kappa $-small, so that $\operatorname{\mathcal{E}}_{\sigma }$ is also essentially $\kappa $-small (Corollary 4.7.5.14). For a partial converse, see Corollary 4.7.9.12 below.

Remark 4.7.9.6. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an inner fibration of simplicial sets and let $\kappa $ be an uncountable regular cardinal. Then $U$ is essentially $\kappa $-small if and only if it is locally $\kappa $-small and, for each vertex $C \in \operatorname{\mathcal{C}}$, the set of isomorphism classes $\pi _0( \operatorname{\mathcal{E}}_{C}^{\simeq } )$ is $\kappa $-small. See Proposition 4.7.8.7.

Proposition 4.7.9.7. Let $\kappa $ be an uncountable cardinal and let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an inner fibration of simplicial sets. The following conditions are equivalent:

$(1)$

The inner fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ is locally $\kappa $-small.

$(2)$

For every edge $e: \Delta ^1 \rightarrow \operatorname{\mathcal{C}}$, the $\infty $-category $\operatorname{\mathcal{E}}_{e} = \Delta ^1 \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ is locally $\kappa $-small.

Proof. Assume that $(2)$ is satisfied; we will prove $(1)$ (the reverse implication is immediate from the definitions). Fix an $n$-simplex $\sigma : \Delta ^ n \rightarrow \operatorname{\mathcal{C}}$; we wish to show that the $\infty $-category $\operatorname{\mathcal{E}}_{\sigma } = \Delta ^ n \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ is essentially $\kappa $-small: that is, that the morphism space $M = \operatorname{Hom}_{\operatorname{\mathcal{E}}_{\sigma }}(X,Y)$ is essentially $\kappa $-small for every pair of objects $X,Y \in \operatorname{\mathcal{E}}_{\sigma }$. Let $i,j \in [n]$ be the images of $X$ and $Y$ under the projection map $\operatorname{\mathcal{E}}_{\sigma } \rightarrow \Delta ^ n$. We may assume without loss of generality that $i \leq j$ (otherwise, the morphism space $M$ is empty). In this case, $M$ can also be identified with a morphism space in the $\infty $-category $\operatorname{\mathcal{E}}_{e}$, where $e$ is the edge of $\operatorname{\mathcal{C}}$ given by the composite map $\Delta ^{1} \xrightarrow { (i,j) } \Delta ^ n \xrightarrow {\sigma } \operatorname{\mathcal{C}}$, so the desired result follows from assumption $(2)$. $\square$

Corollary 4.7.9.8. Let $\kappa $ be an uncountable cardinal and let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an inner fibration of $\infty $-categories. Then $U$ is essentially $\kappa $-small if and only if, for every edge $e: \Delta ^1 \rightarrow \operatorname{\mathcal{C}}$, the $\infty $-category $\operatorname{\mathcal{E}}_{e} = \Delta ^1 \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ is essentially $\kappa $-small.

Proof. Without loss of generality, we may assume that $\operatorname{\mathcal{C}}= \Delta ^ n$ has only finitely many edges. By virtue of Corollary 4.7.6.17, we can reduce to the case where $\kappa $ is regular. In this case, the desired result follows from Proposition 4.7.9.7 and Remark 4.7.9.6. $\square$

Warning 4.7.9.9. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an inner fibration of $\infty $-categories. If $U$ is essentially $\kappa $-small, then the $\infty $-category $\operatorname{\mathcal{E}}_{C} = \{ C\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ is essentially $\kappa $-small for each object $C \in \operatorname{\mathcal{C}}$. Beware that the converse is false in general. For example, let $S$ be a set and let $\operatorname{\mathcal{E}}$ be the category containing a pair of objects $X$ and $Y$, with morphisms given by

\[ \operatorname{Hom}_{\operatorname{\mathcal{E}}}( X, X) = \{ \operatorname{id}_{X} \} \quad \quad \operatorname{Hom}_{\operatorname{\mathcal{E}}}( Y, Y ) = \{ \operatorname{id}_{Y} \} \]
\[ \operatorname{Hom}_{\operatorname{\mathcal{E}}}(X,Y) = S \quad \quad \operatorname{Hom}_{\operatorname{\mathcal{E}}}(Y,X) = \emptyset . \]

Then there is a unique isofibration $U: \operatorname{N}_{\bullet }(\operatorname{\mathcal{E}}) \rightarrow \Delta ^1$ satisfying $U(X) = 0$ and $U(Y) = 1$. The fibers $U^{-1} \{ 0\} $ and $U^{-1} \{ 1\} $ are isomorphic to $\Delta ^0$ (and are therefore essentially $\kappa $-small for every uncountable cardinal $\kappa $). However, the $\infty $-category $\operatorname{N}_{\bullet }(\operatorname{\mathcal{E}})$ is essentially $\kappa $-small if and only if the set $S$ is $\kappa $-small.

Proposition 4.7.9.10. Let $\lambda $ be an uncountable cardinal, let $\kappa = \mathrm{cf}(\lambda )$ be its cofinality, and let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an inner fibration of simplicial sets. If the simplicial set $\operatorname{\mathcal{C}}$ is $\kappa $-small and $U$ is essentially $\lambda $-small, then the simplicial set $\operatorname{\mathcal{E}}$ is essentially $\lambda $-small.

Proof. By virtue of Proposition 5.3.8.11, we may assume that the inner fibration $U$ is minimal. Then, for every $n$-simplex $\Delta ^ n \rightarrow \operatorname{\mathcal{C}}$, the fiber product $\operatorname{\mathcal{E}}_{\sigma } = \Delta ^ n \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ is a minimal $\infty $-category which is essentially $\lambda $-small, and is therefore $\lambda $-small (Corollary 4.7.6.12). Applying Remark 4.7.4.9, we conclude that $\operatorname{\mathcal{E}}$ is $\lambda $-small (and therefore essentially $\lambda $-small). $\square$

Variant 4.7.9.11. Let $\lambda $ be an uncountable cardinal, let $\kappa = \mathrm{ecf}(\lambda )$ be its exponential cofinality, and let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an inner fibration of simplicial sets. If the simplicial set $\operatorname{\mathcal{C}}$ is $\kappa $-small and $U$ is essentially $\lambda $-small, then the $\infty $-category of sections $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ is essentially $\lambda $-small.

Proof. As in the proof of Proposition 5.3.8.11, we may assume that $U$ is minimal, which guarantees that $\operatorname{\mathcal{E}}$ is $\lambda $-small. Applying Corollary 4.7.4.19, we conclude that $\operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ is $\lambda $-small. In particular, the simplicial subset $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) \subseteq \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ is $\lambda $-small, and therefore essentially $\lambda $-small. $\square$

Corollary 4.7.9.12. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an isofibration of $\infty $-categories and let $\kappa $ be an uncountable regular cardinal. If $\operatorname{\mathcal{C}}$ is essentially $\kappa $-small and $U$ is essentially $\kappa $-small, then $\operatorname{\mathcal{E}}$ is essentially $\kappa $-small.

Proof. Using Proposition 4.7.6.15, we can choose an equivalence of $\infty $-categories $\operatorname{\mathcal{C}}' \rightarrow \operatorname{\mathcal{C}}$, where $\operatorname{\mathcal{C}}'$ is minimal. Since $U$ is an isofibration, Corollary 4.5.2.29 guarantees that the $\infty $-category $\operatorname{\mathcal{E}}' = \operatorname{\mathcal{C}}' \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ is equivalent to $\operatorname{\mathcal{E}}$. We may therefore replace $U$ by the projection map $U': \operatorname{\mathcal{E}}' \rightarrow \operatorname{\mathcal{C}}'$, and thereby reduce to the situation where $\operatorname{\mathcal{C}}= \operatorname{\mathcal{C}}'$ is minimal. In this case, $\operatorname{\mathcal{C}}$ is $\kappa $-small (Corollary 4.7.6.12), so the desired result follows from Proposition 4.7.9.10. $\square$

Warning 4.7.9.13. In the statement of Corollary 4.7.9.12, the assumption that $U$ is an isofibration cannot be omitted. For example, suppose that $\operatorname{\mathcal{C}}= \operatorname{N}_{\bullet }( \operatorname{\mathcal{C}}_0 )$ is the nerve of an essentially $\kappa $-small category $\operatorname{\mathcal{C}}_0$, and let $\operatorname{\mathcal{E}}= \operatorname{sk}_0( \operatorname{\mathcal{C}})$ be the constant simplicial set associated to the collection of objects of $\operatorname{\mathcal{C}}_0$. Then the inclusion map $\operatorname{\mathcal{E}}\hookrightarrow \operatorname{\mathcal{C}}$ is an essentially $\kappa $-small inner fibration (which is usually not an isofibration). However, the $\infty $-category $\operatorname{\mathcal{E}}$ is essentially $\kappa $-small if and only if the set of objects of $\operatorname{\mathcal{C}}_0$ is $\kappa $-small.

Corollary 4.7.9.14 (Transitivity of Essential Smallness). Let $V: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{D}}$ and $U: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{C}}$ be inner fibrations of simplicial sets, let $\kappa $ be an uncountable cardinal, and suppose that $U$ is essentially $\kappa $-small. If $U \circ V$ is essentially $\kappa $-small, then $V$ is essentially $\kappa $-small. The converse holds if $\kappa $ is regular and $V$ is an isofibration.

Proof. Assume first that the inner fibration $U \circ V$ is essentially small, and choose an $n$-simplex $\widetilde{\sigma }: \Delta ^ n \rightarrow \operatorname{\mathcal{D}}$; we wish to show that the fiber product $\Delta ^ n \times _{ \operatorname{\mathcal{D}}} \operatorname{\mathcal{E}}$ is essentially $\kappa $-small. To prove this, we are free to replace $\operatorname{\mathcal{D}}$ and $\operatorname{\mathcal{E}}$ by $\Delta ^ n \times _{ \operatorname{\mathcal{C}}} \operatorname{\mathcal{D}}$ and $\Delta ^ n \times _{ \operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$, respectively, and thereby reduce to the case where $\operatorname{\mathcal{C}}= \Delta ^ n$. In this case, the $\infty $-categories $\operatorname{\mathcal{D}}$ and $\operatorname{\mathcal{E}}$ are essentially $\kappa $-small, so the desired result follows from Example 4.7.9.5.

We now prove the converse. Assume that $\kappa $ is regular, that $V$ is an essentially $\kappa $-small isofibration, and choose an $n$-simplex $\sigma : \Delta ^ n \rightarrow \operatorname{\mathcal{C}}$; we wish to show that the $\infty $-category $\Delta ^ n \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ is essentially $\kappa $-small. This follows by applying Corollary 4.7.9.12 to the isofibration of $\infty $-categories $(\operatorname{id}\times V): \Delta ^ n \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}\rightarrow \Delta ^ n \times _{ \operatorname{\mathcal{C}}} \operatorname{\mathcal{D}}$, which is essentially $\kappa $-small by virtue of Remark 4.7.9.3. $\square$

Corollaries 4.7.9.12 and 4.7.9.14 have local counterparts.

Proposition 4.7.9.15. Let $\kappa $ be an uncountable regular cardinal, let $\operatorname{\mathcal{C}}$ be an $\infty $-category which is locally $\kappa $-small, and let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an inner fibration. The following conditions are equivalent:

$(1)$

The inner fibration $U$ is locally $\kappa $-small.

$(2)$

The $\infty $-category $\operatorname{\mathcal{E}}$ is locally $\kappa $-small.

Proof. Assume first that $(1)$ is satisfied; we will prove $(2)$. Let $X$ and $Y$ be objects of $\operatorname{\mathcal{E}}$, and set $\overline{X} = U(X)$ and $\overline{Y} = U(Y)$. We wish to show that the Kan complex $\operatorname{Hom}_{\operatorname{\mathcal{E}}}(X,Y)$ is essentially $\kappa $-small. By virtue of Proposition 4.6.1.21, the functor $U$ induces a Kan fibration $\theta : \operatorname{Hom}_{\operatorname{\mathcal{E}}}(X,Y) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{C}}}( \overline{X}, \overline{Y} )$. Our assumption that $\operatorname{\mathcal{C}}$ is locally $\kappa $-small guarantees that the Kan complex $\operatorname{Hom}_{\operatorname{\mathcal{C}}}( \overline{X}, \overline{Y} )$ is essentially $\kappa $-small. By virtue of Corollary 4.7.7.2, it will suffice to show that for every morphism $e: \overline{X} \rightarrow \overline{Y}$ in $\operatorname{\mathcal{C}}$, the Kan complex $\operatorname{Hom}_{\operatorname{\mathcal{E}}}(X,Y)_{e} = \{ e \} \times _{ \operatorname{Hom}_{\operatorname{\mathcal{C}}}( \overline{X}, \overline{Y} ) } \operatorname{Hom}_{\operatorname{\mathcal{E}}}(X,Y)$ is essentially $\kappa $-small. This follows immediately from the local $\kappa $-smallness of the $\infty $-category $\operatorname{\mathcal{E}}_{e} = \Delta ^1 \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$.

We now show that $(2)$ implies $(1)$. Assume that $\operatorname{\mathcal{E}}$ is locally $\kappa $-small and choose a simplex $\sigma : \Delta ^ n \rightarrow \operatorname{\mathcal{C}}$; we will show that the $\infty $-category $\operatorname{\mathcal{E}}_{\sigma } = \Delta ^ n \times _{ \operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ is locally $\kappa $-small. Fix a pair of objects $\widetilde{X}, \widetilde{Y} \in \operatorname{\mathcal{E}}_{\sigma }$; we wish to show that the Kan complex $\operatorname{Hom}_{ \operatorname{\mathcal{E}}_{\sigma } }( \widetilde{X}, \widetilde{Y} )$ is essentially $\kappa $-small. Let $X$ and $Y$ denote the images of $\widetilde{X}$ and $\widetilde{Y}$ in the $\infty $-category $\operatorname{\mathcal{E}}$, and set $\overline{X} = U(X)$ and $\overline{Y} = U(Y)$ as above. If the Kan complex $\operatorname{Hom}_{ \operatorname{\mathcal{E}}_{\sigma } }( \widetilde{X}, \widetilde{Y} )$ is nonempty, then it can be identified with a fiber of the Kan fibration $\theta : \operatorname{Hom}_{\operatorname{\mathcal{E}}}(X,Y) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{C}}}( \overline{X}, \overline{Y} )$, which is essentially $\kappa $-small by virtue of Corollary 4.7.7.2. $\square$

Corollary 4.7.9.16 (Transitivity of Local Smallness). Let $V: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{D}}$ and $U: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{C}}$ be inner fibrations of simplicial sets, let $\kappa $ be an uncountable regular cardinal, and suppose that $U$ is locally $\kappa $-small. Then $V$ is locally $\kappa $-small if and only if $U \circ V$ is locally $\kappa $-small.

Proof. Suppose first that $V$ is locally $\kappa $-small. Choose an $n$-simplex $\sigma : \Delta ^ n \rightarrow \operatorname{\mathcal{C}}$; we wish to show that the $\infty $-category $\Delta ^ n \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ is locally $\kappa $-small. This follows by applying Proposition 4.7.9.15 to the inner fibration of $\infty $-categories $(\operatorname{id}\times V): \Delta ^ n \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}\rightarrow \Delta ^ n \times _{ \operatorname{\mathcal{C}}} \operatorname{\mathcal{D}}$, which is locally $\kappa $-small by virtue of Remark 4.7.9.3.

Now suppose that $U \circ V$ is locally $\kappa $-small, and choose an $n$-simplex $\widetilde{\sigma }: \Delta ^ n \rightarrow \operatorname{\mathcal{D}}$; we wish to show that the fiber product $\Delta ^ n \times _{ \operatorname{\mathcal{D}}} \operatorname{\mathcal{E}}$ is locally $\kappa $-small. To prove this, we are free to replace $\operatorname{\mathcal{D}}$ and $\operatorname{\mathcal{E}}$ by $\Delta ^ n \times _{ \operatorname{\mathcal{C}}} \operatorname{\mathcal{D}}$ and $\Delta ^ n \times _{ \operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$, respectively, and thereby reduce to the case where $\operatorname{\mathcal{C}}= \Delta ^ n$ is a locally $\kappa $-small $\infty $-category. In this case, our assumptions on $U$ and $U \circ V$ guarantee that the $\infty $-categories $\operatorname{\mathcal{D}}$ and $\operatorname{\mathcal{E}}$ are also locally $\kappa $-small (Proposition 4.7.9.15), so that $V$ is automatically locally $\kappa $-small (by Proposition 4.7.9.15 again). $\square$