Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 8.1.6.6. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $L$ be a collection of morphisms of $\operatorname{\mathcal{C}}$, and let $R$ be the collection of all isomorphisms in $\operatorname{\mathcal{C}}$. Assume that $L$ is stable under isomorphism (that is, if $f$ is a morphism of $\operatorname{\mathcal{C}}$ which is isomorphic to an element of $L$ in the $\infty $-category $\operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{C}})$, then $f$ also belongs to $L$). Then $L$ and $R$ are pushout-compatible.