Construction 8.1.7.1. Let $\operatorname{\mathcal{C}}$ be a simplicial set and let $\lambda _{+}: \operatorname{Tw}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$ be the projection map of Notation 8.1.1.6, carrying each vertex $(f: X \rightarrow Y)$ of $\operatorname{Tw}(\operatorname{\mathcal{C}})$ to the vertex $Y \in \operatorname{\mathcal{C}}$. Under the bijection supplied by Proposition 8.1.3.7, we can identify $\lambda _{+}$ with a morphism of simplicial sets $\rho _{+}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Cospan}(\operatorname{\mathcal{C}})$. If $\sigma $ is an $n$-simplex of $\operatorname{\mathcal{C}}$, which we display informally as a diagram
then $\rho _{+}(\sigma )$ is an $n$-simplex of $\operatorname{Cospan}(\operatorname{\mathcal{C}})$ which can be depicted informally as a diagram
Note that $\rho _{+}$ is a monomorphism of simplicial sets.