Remark 8.1.10.4 (Contravariant Transport for Cospan Fibrations). In the situation of Theorem 8.1.10.3, let $C$ and $C'$ be objects of $\operatorname{\mathcal{C}}$, so that Proposition 8.1.7.6 supplies equivalences of $\infty $-categories
Let $e$ be a morphism from $C$ to $C'$ in the $(\infty ,2)$-category $\operatorname{Cospan}(\operatorname{\mathcal{C}})$, which we identify with a pair of morphisms $C \xrightarrow {f} B \xleftarrow {f'} C'$ in the $\infty $-category $\operatorname{\mathcal{C}}$. Choose functors $f^{\ast }: \operatorname{\mathcal{E}}_{B} \rightarrow \operatorname{\mathcal{E}}_{C}$, $f'_{!}: \operatorname{\mathcal{E}}_{C'} \rightarrow \operatorname{\mathcal{E}}_{B}$ and diagrams
which exhibit $f^{\ast }$ and $f'_{!}$ as given by contravariant and covariant transport along $f$ and $f'$, respectively (see Definitions 5.2.2.4 and 5.2.2.15). Then the composition
can be identified with a functor $T: \Delta ^1 \times \operatorname{\mathcal{E}}_{C'} \rightarrow \operatorname{Cospan}(\operatorname{\mathcal{E}})$ which fits into a commutative diagram
For each object $X \in \operatorname{\mathcal{E}}_{C'}$, the characterization of $V$-cartesian morphisms given in Theorem 8.1.10.3 shows that $T|_{ \Delta ^1 \times \{ X\} }$ is a $V$-cartesian morphism of $\operatorname{Pith}(\operatorname{Cospan}^{\mathrm{all},R}(\operatorname{\mathcal{E}}))$. It follows that the diagram
commutes up to homotopy, where the functor $e^{\ast }$ is given by contravariant transport along $e$ (for the cartesian fibration $V$).