Example 8.1.10.7. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pushouts and let $A$ denote the collection of all morphisms of $\operatorname{\mathcal{C}}$. Then an inner fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ is a dual Beck-Chevalley fibration (in the sense of Definition 8.1.10.6) if and only if it is a dual Beck-Chevalley fibration relative to $(A,A)$ (in the sense of Definition 8.1.10.6).
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$