Notation 8.4.3.1. Let $\kappa $ be an uncountable regular cardinal. If $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ are $\kappa $-cocomplete $\infty $-categories, we let $\operatorname{Fun}^{\kappa }(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$ denote the full subcategory of $\operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$ spanned by those functors $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ which preserve $\kappa $-small colimits.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$