Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 8.4.4.2. Let $\kappa $ be a regular cardinal, let $\operatorname{\mathcal{C}}$ be an essentially $\kappa $-small $\infty $-category, let $\operatorname{\mathcal{D}}$ be an $\infty $-category which is cocomplete and locally small, and let $F: \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}) \rightarrow \operatorname{\mathcal{D}}$ be a functor. The following conditions are equivalent:

$(1)$

The functor $F$ preserves small colimits.

$(2)$

The functor $F$ admits a right adjoint $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}})$.

Proof. Assume that $F$ preserves small colimits; we will show that it admits a right adjoint (the reverse implication follows from Corollary 7.1.4.22). Choose covariant Yoneda embeddings

\[ h_{\bullet }^{\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}) \quad \quad h_{\bullet }^{\operatorname{\mathcal{D}}}: \operatorname{\mathcal{D}}\rightarrow \operatorname{Fun}( \operatorname{\mathcal{D}}^{\operatorname{op}}, \operatorname{\mathcal{S}}), \]

set $f = F \circ h_{\bullet }^{\operatorname{\mathcal{C}}}$, and let $G$ denote the composite functor

\[ \operatorname{\mathcal{D}}\xrightarrow { h_{\bullet }^{\operatorname{\mathcal{D}}} } \operatorname{Fun}( \operatorname{\mathcal{D}}^{\operatorname{op}}, \operatorname{\mathcal{S}}) \xrightarrow { \circ f^{\operatorname{op}} } \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}). \]

It follows from Proposition 8.4.4.1 that $G$ admits a left adjoint $F': \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}) \rightarrow \operatorname{\mathcal{D}}$ such that $F' \circ h_{\bullet }^{\operatorname{\mathcal{C}}}$ is isomorphic to $f = F \circ h_{\bullet }^{\operatorname{\mathcal{C}}}$. Since the functor $F'$ also preserves small colimits (Corollary 7.1.4.22), Theorem 8.4.0.3 implies that it is isomorphic to $F$. It follows that $G$ is also a right adjoint of $F$. $\square$