Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 9.1.1.13. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories which exhibits $\operatorname{\mathcal{D}}$ as a localization of $\operatorname{\mathcal{C}}$ with respect to some collections of morphisms $W$, and let $C$ be an object of $\operatorname{\mathcal{C}}$. The following conditions are equivalent:

$(1)$

The object $C$ is $W$-local, in the sense of Definition 9.1.1.1.

$(2)$

For every object $C' \in \operatorname{\mathcal{C}}$, the functor $F$ induces a homotopy equivalence of mapping spaces $\theta _{C',C}: \operatorname{Hom}_{\operatorname{\mathcal{C}}}(C',C) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{D}}}( F(C'), F(C) )$.

Proof. Fix an uncountable regular cardinal $\kappa $ for which both $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ are essentially $\kappa $-small. Precomposition with $F$ determines a functor $F^{\ast }: \operatorname{Fun}( \operatorname{\mathcal{D}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \kappa } ) \rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \kappa } )$. It follows from Proposition 7.6.7.13 that the functor $F^{\ast }$ admits a left adjoint $F_{!}$ (given by left Kan extension along $F^{\operatorname{op}}$). Let $h^{\operatorname{\mathcal{C}}}_{\bullet }: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \kappa } )$ and $h^{\operatorname{\mathcal{D}}}_{\bullet }: \operatorname{\mathcal{D}}\rightarrow \operatorname{Fun}( \operatorname{\mathcal{D}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \kappa } )$ be covariant Yoneda embeddings for $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$, respectively, so that the diagram of $\infty $-categories

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}\ar [d]^{F} \ar [r]^-{h^{\operatorname{\mathcal{C}}}_{\bullet } } & \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \kappa } ) \ar [d]^{ F_{!} } \\ \operatorname{\mathcal{D}}\ar [r]^-{ h^{\operatorname{\mathcal{D}}}_{\bullet } } & \operatorname{Fun}( \operatorname{\mathcal{D}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \kappa } ) } \]

commutes up to isomorphism (Example 8.4.4.5), where the horizontal maps are fully faithful (Theorem 8.3.3.13). It follows that, for every pair of objects $C', C \in \operatorname{\mathcal{C}}$, we can identify $\theta _{C',C}$ with the comparison map

\begin{eqnarray*} \operatorname{Hom}_{ \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \kappa } ) }( h^{\operatorname{\mathcal{C}}}_{C'}, h^{\operatorname{\mathcal{C}}}_{C} ) & \rightarrow & \operatorname{Hom}_{ \operatorname{Fun}( \operatorname{\mathcal{D}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \kappa } ) }( F_{!} h^{\operatorname{\mathcal{C}}}_{C'}, F_{!} h^{\operatorname{\mathcal{C}}}_{C} ) \\ & \simeq & \operatorname{Hom}_{ \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \kappa } ) }( h^{\operatorname{\mathcal{C}}}_{C'}, F^{\ast } F_{!} h^{\operatorname{\mathcal{C}}}_{C} ) \end{eqnarray*}

given by precomposition with the unit $u: h^{\operatorname{\mathcal{C}}}_{C} \rightarrow F^{\ast } F_{!} h^{\operatorname{\mathcal{C}}}_{C}$. Combining this observation with Proposition 8.3.1.1, we see that condition $(2)$ can be restated as follows:

$(2')$

The unit map $u: h^{\operatorname{\mathcal{C}}}_{C} \rightarrow F^{\ast } F_{!} h^{\operatorname{\mathcal{C}}}_{C}$ is an isomorphism in the $\infty $-category $\operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \kappa } )$.

Our assumption that $F$ exhibits $\operatorname{\mathcal{D}}$ as a localization of $\operatorname{\mathcal{C}}$ guarantees that the pullback functor $F^{\ast }$ is fully faithful. Using Remark 6.2.2.18, we see that $u$ is an isomorphism if and only the representable functor $h_{C}^{\operatorname{\mathcal{C}}}$ belongs to the essential image of $F^{\ast }$: that is, the collection of functors $\operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{S}}^{< \kappa }$ which carry every morphism of $W$ to an isomorphism in $\operatorname{\mathcal{S}}^{< \kappa }$. This is a reformulation of $(1)$. $\square$