Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Variant 3.1.7.12. Let $f: X \rightarrow Y$ be a morphism of simplicial sets, and let $n$ be a nonnegative integer. Arguing as in the proof of Proposition 3.1.7.1, we see that $f$ admits a factorization $X \xrightarrow {f'} Q(f) \xrightarrow {f''} Y$ with the following properties:

$(a)$

The morphism $f'$ can be realized as a transfinite pushout of horn inclusions $\Lambda ^{m}_{i} \hookrightarrow \Delta ^ m$ for $0 \leq i \leq m$ and $m > n$.

$(b)$

For $0 \leq i \leq m$ and $m > n$, every lifting problem

\[ \xymatrix@R =50pt@C=50pt{ \Lambda ^{m}_{i} \ar [r] \ar [d] & Q(f) \ar [d]^{f''} \\ \Delta ^{m} \ar [r] \ar@ {-->}[ur] & Y } \]

admits a solution.

It follows from $(a)$ that morphism $f'$ is a monomorphism which is bijective on $k$-simplices for $k < n$.

Now suppose that the morphism $f$ satisfies the following additional condition:

$(\ast )$

For $0 \leq i \leq m$ and $0 < m \leq n$, every lifting problem

\[ \xymatrix@R =50pt@C=50pt{ \Lambda ^{m}_{i} \ar [r] \ar [d] & X \ar [d]^{f} \\ \Delta ^{m} \ar [r] \ar@ {-->}[ur] & Y } \]

admits a solution.

Since $f'$ is bijective on $k$-simplices for $k < n$, it follows that the morphism $f''$ also satisfies condition $(\ast )$. Combining this with assumption $(b)$, we conclude that $f''$ is a Kan fibration.