Corollary 3.5.9.30. Let $X$ be a Kan complex and let $n \geq -2$ be an integer. The following conditions are equivalent:
- $(1)$
The Kan complex $X$ is $n$-truncated.
- $(2)$
For $m \geq n+2$, every morphism $f: \operatorname{\partial \Delta }^{m} \rightarrow X$ is nullhomotopic.
- $(3)$
If $A$ is an $(n+1)$-connective simplicial set, then every morphism $f: A \rightarrow X$ is nullhomotopic.
- $(4)$
If $A$ is an $(n+1)$-connective simplicial set, then the diagonal map $X \rightarrow \operatorname{Fun}(A,X)$ is a homotopy equivalence.
- $(5)$
For every $(n+1)$-connective morphism of simplicial sets $A \rightarrow B$, the induced map $\operatorname{Fun}(B,X) \rightarrow \operatorname{Fun}(A,X)$ is a homotopy equivalence.