Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 3.5.9.29. Let $n \geq -2$ be an integer and let $f: X \rightarrow Y$ be a morphism of Kan complexes. The following conditions are equivalent:

$(1)$

The morphism $f$ is $n$-truncated.

$(2)$

For every $(n+1)$-connective morphism of simplicial sets $A \rightarrow B$, the diagram of Kan complexes

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{Fun}(B, X) \ar [r] \ar [d] & \operatorname{Fun}(A, X) \ar [d] \\ \operatorname{Fun}( B, Y) \ar [r] & \operatorname{Fun}(A, Y) } \]

is a homotopy pullback square.

$(3)$

The diagram

\[ \xymatrix@R =50pt@C=50pt{ X \ar [r] \ar [d] & \operatorname{Fun}( \operatorname{\partial \Delta }^{n+2}, X ) \ar [d] \\ Y \ar [r] & \operatorname{Fun}( \operatorname{\partial \Delta }^{n+2}, Y) } \]

is a homotopy pullback square.

Proof. The equivalence $(1) \Leftrightarrow (3)$ follows from Corollary 3.5.9.20, and the implication $(2) \Rightarrow (3)$ from Corollary 3.5.2.6. It will therefore suffice to show that $(1)$ implies $(2)$. Using Proposition 3.1.7.1, we can reduce to the case where $f$ is a Kan fibration. In this case, the map $\operatorname{Fun}(A, X) \rightarrow \operatorname{Fun}(A,Y)$ is also a Kan fibration (Corollary 3.1.3.2), so condition $(2)$ is equivalent to the requirement that the map $\theta : \operatorname{Fun}(B, X) \rightarrow \operatorname{Fun}(A, X) \times _{ \operatorname{Fun}(A,Y) } \operatorname{Fun}(B, Y)$ is a homotopy equivalence (Example 3.4.1.3). This follows from Proposition 3.5.9.24 (and Example 3.5.9.2). $\square$