Proposition 4.8.2.6. Let $\operatorname{\mathcal{C}}$ be a locally Kan simplicial category. For every integer $n$, the following conditions are equivalent:
The homotopy coherent nerve $\operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}})$ is locally $n$-truncated.
For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, the Kan complex $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{\bullet }$ is $n$-truncated.