Variant 4.8.2.7. Let $\operatorname{\mathcal{C}}$ be a differential graded category. For every integer $n \geq -1$, the following conditions are equivalent:
The differential graded nerve $\operatorname{N}_{\bullet }^{\operatorname{dg}}(\operatorname{\mathcal{C}})$ is locally $n$-truncated.
For every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, the chain complex $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{\ast }$ is homologically $n$-truncated: that is, the homology groups $\mathrm{H}_{m}( \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)_{\ast } )$ vanish for $m > n$.