Corollary 4.8.2.15. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ denote its homotopy category. The following conditions are equivalent:
- $(1)$
The $\infty $-category $\operatorname{\mathcal{C}}$ is locally $0$-truncated.
- $(2)$
The comparison map $\operatorname{\mathcal{C}}\rightarrow \operatorname{N}_{\bullet }(\mathrm{h} \mathit{\operatorname{\mathcal{C}}})$ is an equivalence of $\infty $-categories.
- $(3)$
The comparison map $\operatorname{\mathcal{C}}\rightarrow \operatorname{N}_{\bullet }( \mathrm{h} \mathit{\operatorname{\mathcal{C}}} )$ is a trivial Kan fibration.
- $(4)$
The $\infty $-category $\operatorname{\mathcal{C}}$ is equivalent to (the nerve of) an ordinary category.