Exercise 4.8.2.16. Show that an $\infty $-category $\operatorname{\mathcal{C}}$ is locally $(-1)$-truncated if and only if there is an equivalence of $\infty $-categories $u: \operatorname{\mathcal{C}}\rightarrow \operatorname{N}_{\bullet }(Q)$, for some partially ordered set $Q$. In this case, the morphism $u$ is automatically a trivial Kan fibration (see Example 4.4.1.6 and Proposition 4.5.5.20).
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$