Corollary 4.8.2.17. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $n \geq 0$ be an integer. The following conditions are equivalent:
- $(1)$
The $\infty $-category $\operatorname{\mathcal{C}}$ is locally $(n-2)$-truncated.
- $(2)$
The tautological map $\operatorname{\mathcal{C}}\rightarrow \operatorname{cosk}_{n}(\operatorname{\mathcal{C}})$ is an equivalence of $\infty $-categories.
- $(3)$
There exists an $n$-coskeletal $\infty $-category $\operatorname{\mathcal{D}}$ which is equivalent to $\operatorname{\mathcal{C}}$.