Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 4.8.4.13. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $n$ be a positive integer. Then the comparison map $\operatorname{cosk}_{n}^{\circ }(\operatorname{\mathcal{C}}) \twoheadrightarrow \mathrm{h}_{\mathit{\leq n}}\mathit{(\operatorname{\mathcal{C}})}$ of Construction 4.8.4.9 is a trivial Kan fibration.

Proof. Fix an integer $m \geq 0$; we wish to show that every lifting problem

4.81
\begin{equation} \begin{gathered}\label{equation:coskeleton-vs-homotopy} \xymatrix@R =50pt@C=50pt{ \operatorname{\partial \Delta }^ m \ar [d] \ar [r]^-{\sigma _0} & \operatorname{cosk}^{\circ }_{n}(\operatorname{\mathcal{C}}) \ar [d]^{q} \\ \Delta ^ m \ar@ {-->}[ur] \ar [r]^-{\overline{\sigma }} & \mathrm{h}_{\mathit{\leq n}}\mathit{(\operatorname{\mathcal{C}})} } \end{gathered} \end{equation}

admits a solution.

Let $\sigma $ be any $m$-simplex of $\operatorname{cosk}_{n}^{\circ }(\operatorname{\mathcal{C}})$ satisfying $q( \sigma ) = \overline{\sigma }$. By virtue of Remark 4.8.4.10, the commutativity of the diagram (4.81) guarantees that $\sigma _0$ and $\sigma $ coincide on the $(n-1)$-skeleton of $\operatorname{\partial \Delta }^{m}$. Consequently, if $m \leq n$, then $\sigma $ is a solution to the the lifting problem (4.81). We will therefore assume that $m > n$. In this case, the boundary $\operatorname{\partial \Delta }^{m}$ contains the $n$-skeleton of $\Delta ^{m}$. It will therefore suffice to show that $\sigma _0$ can be extended to an $m$-simplex $\sigma '$ of $\operatorname{cosk}_{n}^{\circ }(\operatorname{\mathcal{C}})$: the commutativity of the diagram (4.81) guarantees that any such extension satisfies the identity $q( \sigma ' ) = \overline{\sigma }$ (Proposition 4.8.4.11). If $m \geq n+2$, then the existence of $\sigma '$ is automatic (since $\operatorname{cosk}^{\circ }_{n}(\operatorname{\mathcal{C}})$ is $(n+1)$-coskeletal). It will therefore suffice to treat the case $m = n+1$. In this case, we can identify $\sigma _0$ with a diagram $\tau _0: \operatorname{\partial \Delta }^{n+1} \rightarrow \operatorname{\mathcal{C}}$, and we wish to show that $\tau _0$ can be extended to an $(n+1)$-simplex of $\operatorname{\mathcal{C}}$. Note that $\sigma |_{ \operatorname{\partial \Delta }^{n+1} }$ determines another diagram $\tau _1: \operatorname{\partial \Delta }^{n+1} \rightarrow \operatorname{\mathcal{C}}$. Moreover, the commutativity of the diagram (4.81) guarantees that $\tau _0$ and $\tau _1$ are isomorphic relative to $\operatorname{sk}_{n-1}( \Delta ^{n+1} )$ (Proposition 4.8.4.11). Using Corollary 4.4.5.3, we are reduced to showing that $\tau _1$ can be extended to an $(n+1)$-simplex of $\operatorname{\mathcal{C}}$, which follows from the existence of $\sigma $. $\square$