Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Variant 4.8.5.26. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be an inner fibration of $\infty $-categories. Then $F$ is full if and only if, for every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, the induced map

\[ F_{X,Y}: \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{D}}}( F(X), F(Y) ) \]

is surjective on vertices.