Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 4.8.5.27. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be an inner fibration of $\infty $-categories and let $n \geq 1$ be an integer. The following conditions are equivalent:

$(1)$

The functor $F$ is $n$-full.

$(2)$

For every pullback diagram of $\infty $-categories

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}' \ar [r] \ar [d]^{F'} & \operatorname{\mathcal{C}}\ar [d]^{F} \\ \operatorname{\mathcal{D}}' \ar [r] & \operatorname{\mathcal{D}}, } \]

the functor $F'$ is $n$-full.

$(3)$

For every pullback diagram of $\infty $-categories

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}' \ar [r] \ar [d]^{F'} & \operatorname{\mathcal{C}}\ar [d]^{F} \\ \Delta ^1 \ar [r] & \operatorname{\mathcal{D}}, } \]

the functor $F'$ is $n$-full.

Proof. For $n \geq 2$, this follows from the criterion of Corollary 4.8.5.25. For $n = 1$, it follows from the criterion of Variant 4.8.5.26. $\square$