Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 4.8.5.28. Let $n > 0$ be an integer and suppose we are given a commutative diagram of $\infty $-categories

\[ \xymatrix { \operatorname{\mathcal{C}}\ar [rr]^{F} \ar [dr] & & \operatorname{\mathcal{D}}\ar [dl] \\ & \operatorname{\mathcal{E}}, & } \]

where the vertical maps are inner fibrations. Then $F$ is $n$-full if and only if, for every morphism $u$ of $\operatorname{\mathcal{E}}$, the induced map

\[ F_{u}: \Delta ^1 \times _{\operatorname{\mathcal{E}}} \operatorname{\mathcal{C}}\rightarrow \Delta ^1 \times _{\operatorname{\mathcal{E}}} \operatorname{\mathcal{D}} \]

is $n$-full.

Proof. Using Proposition 4.1.3.2, we can reduce to the case where $F$ is an inner fibration, in which case it follows from the criterion of Proposition 4.8.5.27. $\square$