Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 4.8.6.17. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be an inner fibration of $\infty $-categories and let $n \geq 0$ be an integer. The following conditions are equivalent:

$(1)$

The functor $F$ is essentially $n$-categorical.

$(2)$

For every pullback diagram of $\infty $-categories

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}' \ar [r] \ar [d]^{F'} & \operatorname{\mathcal{C}}\ar [d]^{F} \\ \operatorname{\mathcal{D}}' \ar [r] & \operatorname{\mathcal{D}}, } \]

the functor $F'$ is essentially $n$-categorical.

$(3)$

For every pullback diagram of $\infty $-categories

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}' \ar [r] \ar [d]^{F'} & \operatorname{\mathcal{C}}\ar [d]^{F} \\ \operatorname{\mathcal{D}}' \ar [r] & \operatorname{\mathcal{D}}, } \]

where $\operatorname{\mathcal{D}}'$ is locally $(n-1)$-truncated, the $\infty $-category $\operatorname{\mathcal{C}}'$ is also locally $(n-1)$-truncated.

$(4)$

For every pullback diagram of $\infty $-categories

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}' \ar [r] \ar [d] & \operatorname{\mathcal{C}}\ar [d]^{F} \\ \Delta ^1 \ar [r] & \operatorname{\mathcal{D}}, } \]

the $\infty $-category $\operatorname{\mathcal{C}}'$ is locally $(n-1)$-truncated.

Proof. Combine Proposition 4.8.5.27 with the criterion of Example 4.8.6.9. $\square$