Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 4.8.7.5. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories and let $n$ be an integer. Then $F$ is categorically $n$-connective if and only if it satisfies the following pair of conditions:

  • The functor $F$ is locally $(n-1)$-connective. That is, for every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, the map of Kan complexes

    \[ F_{X,Y}: \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{D}}}( F(X), F(Y) ) \]

    is $(n-1)$-connective.

  • If $n \geq 0$, then $F$ is essentially surjective.

See Corollary 4.8.5.22.