Remark 4.8.7.6 (Symmetry). Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories and let $n$ be an integer. Then $F$ is categorically $n$-connective if and only if the opposite functor $F^{\operatorname{op}}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{D}}^{\operatorname{op}}$ is categorically $n$-connective.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$